0%

网络爬虫工程师面试小笔记

网络爬虫工程师面试小笔记

————小企业,7K至10k版,面试总结。Payne

面试题之一:Python单例模式

  1. 什么是Python的单例模式?

单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式主要目的是确保某一个类只有一个实例存在。当希望在整个系统中,某个类只能出现一个实例时,单例对象就派上用场了。 面向对象编程单例模式,保证了在程序运行中该类只实例化一次,并提供了一个全局访问点 Python的模块就是天然的单例模式 当模块在第一次导入时,就会生成 .pyc 文件 当第二次导入时就会直接先加载 .pyc 文件,而不会再次执行模块代码。 我们只需把相关函数和数据定义在一个模块中,就可以获得一个单例对象。

  1. 如何实现单例模式?
1.基于类:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Singleton(object):
# def __new__(slef):类方法
# pass
# 当我们没写时默认调用object__new__方法

# 然后在执行类的实例化对象:__init__
def __init__(self): # 实例方法
pass

@classmethod
def instance(cls, *args,**kwargs):
if not has attr(Singleton,"_instance"):
Singleton._instance = Singleton(*args,**kwargs)
return Singleton._intance

此时是以完成了一个简单的单例模式案例,But实际开发中随时凉凉 举例说明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Singleton(object):

def __init__(self):
pass

@classmethod
def instance(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance

import threading

def task(arg):
obj = Singleton.instance()
print(obj)

for i in range(10):
t = threading.Thread(target=task,args=[i,])
t.start()

当然此时也并没有什么问题,BUT在’ init ‘方法中加入I/O(input/output)操作就凉凉了 问题出现了,按照以上方式创建的单例无法支持多线程 缘由:Python中实例化对象与初始化对象是分开执行的,又由于多线程之间是通信共享的,故出现线程安全问题。主要体现为,create一个之后kill一个,create一个又被kill一个。所以就。。。 解决思路一:相互独立,分而治之。加锁独立 也就是咱们所了解、知道的线程锁的概念,使得其无序变为相对有序。具体代码便不在此赘述 在看看思路一(相互独立,分而治之。加锁独立) 解决思路二:‘反’实例化,加锁保护独立,确保通用性 在Python3中,调用父类方法是为super(),那么是否可以增加判断: 当类属性不为空时,我们便不在实例化且返回一个已实例化的类属性。这样还是不太完美,带有局限性。进一步加锁保护优化以保障多线程情况下只有一个线程同时访问。这样就保障了单例的安全 基于 new 方法实现!!!

1
2
在回到基于类的第一个代码块,并详细查看其注释。
实例化一个对象是先执行了类的__new__方法(若未写执行object.__new__),实例化对象;然后子啊执行类的__init__方法,对这个对象进行初始化。基于此实现单例。
  1. 基于装饰器

使用装饰器实现,实例如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def Singleton(cls):
_instance = {}

def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls]

return _singleton

@Singleton
class A(object):
a = 1

def __init__(self, x=0):
self.x = x

a1 = A(2)
a2 = A(3)
  1. 使用模块的方法

书写代码(并保存在Singleton.py中):

1
2
3
4
class Singleton(object):
def func(self):
pass
singleton = Sinleton()

// from * import singleton 需使用时,直接在其他文件中导入此文件中的对象,那么这个对象即是单例模式对象 还有个基于元类的就没书写了具体请看:https://blog.csdn.net/weixin_44239343/article/details/89376796

面试题之二:Redis有几种数据类型?

如果是单单是Redis那么常用数据类型为五种 他们分别是:String,List,hash,set,zset String:字符串,一个字符串Value最多可以是512M Hash:哈希,是一个String类型的field和Value的映射表 List:列表,时间是链表 Set:集合是一个String类型无序无重复集合,其通过Hash Table实现 Zset(sorted):有序集合 那么应聘时,请注意这个小坑,你Python使用Redis又几种数据类型? 这个是基于语言来回答的,所用语言+Redis数据类型杂糅 Number,String,list,tuple(这个不确定),dict,aggregate 同时又涉语言所拥有的数据类型与redis,一样的就‘合二为一’嘛 以Python为例,稍后继续探究这(6+5)之间的杂糅,dict与aggregate其二者区别为主(其实我也不晓得更深的了)。以及1对1,1对多,多对1。数据结构搞起来,然后哼哼~。

面试题之三:Scrapy框架的运行流程及各模块的作用

如果简历里面写了分布式会拓展scrapy-Redis架构以及其作用。 CAP理论,估计会扯到数据这块。拓展database什么特性啊,之类的。谈优化,谈数据结构。反正数据结构与算法这块,基于此,难于此,也凉于此

面试题之四:scrapy去重所用的几种机制

谨记:先从scrapy本身的去重原理及机制说起来,最基础,优缺点,去重原理等等。一步步来,一上来就BloonFilter,风险不小啊 对于此,自我总结如下:

1、scrapy 基于内存

1
2
3
4
5
scrapy源码中可以找到一个dupefilters.py去重器;

需要将dont_filter设置为False开启去重,默认是True,没有开启去重;

对于每一个url的请求,调度器都会根据请求得相关信息加密得到一个指纹信息,并且将指纹信息和set()集合中的指纹信息进 行 比对,如果set()集合中已经存在这个数据,就不在将这个Request放入队列中;

2、redis 基于内存 更加快捷、速度快、易于管理

1
不说了,前面是叩门砖,Redis就是决胜之地,没啥可讲的,会的基本都会,不会的我也不会,在深挖其原理数据结构,估计得喝上一点,也怕自己一不小心怕给扯飞了

3、布隆过滤器 大 可能存在拥有一定的错误率

1
加分项,是满分还是SSS+。

对于此面试个人总结如下: 源于基础,死于基础(数据结构及类型, 以及算法) 知识点:点串线,线成面。 自己也还有很长一段路走,加油,加油~