内容选自即将出版的《Python3 反爬虫原理与绕过实战》,本次公开书稿范围为第 6 章——文本混淆反爬虫。本篇为第 6 章中的第 4 小节,其余小节将逐步放送。
字体反爬虫开篇概述
在 CSS3 之前,Web 开发者必须使用用户计算机上已有的字体。但是在 CSS3 时代,开发者可以使用@font-face 为网页指定字体,对用户计算机字体的依赖。开发者可将心仪的字体文件放在 Web 服务器上,并在 CSS 样式中使用它。用户使用浏览器访问 Web 应用时,对应的字体会被浏览器下载到用户的计算机上。 在学习浏览器和页面渲染的相关知识时,我们了解到 CSS 的作用是修饰 HTML ,所以在页面渲染的时候不会改变 HTML 文档内容。由于字体的加载和映射工作是由 CSS 完成的,所以即使我们借助 Splash、Selenium 和 Puppeteer 工具也无法获得对应的文字内容。字体反爬虫正是利用了这个特点,将自定义字体应用到网页中重要的数据上,使得爬虫程序无法获得正确的数据。
6.4.1 字体反爬虫示例
示例 7:字体反爬虫示例。 网址:http://www.porters.vip/confusion/movie.html。 任务:爬取影片信息展示页中的影片评分、评价人数和票房数据,页面内容如图 6-32 所示。 图 6-32 示例 7 页面 在编写代码之前,我们需要确定目标数据的元素定位。定位时,我们在 HTML 中发现了一些奇怪的符号,HTML 代码如下:
1 |
<div class="movie-index"> |
页面中重要的数据都是一些奇怪的字符,本应该显示“9.7”的地方在 HTML 中显示的是“☒.☒”,而本应该显示“56.83”的地方在 HTML 中显示的是“☒☒.☒☒”。与 6.3 节中的映射反爬虫不同,案例中的文字都被“☒”符号代替了,根本无法分辨。这就很奇怪了,“☒”能代表这么多种数字吗? 要注意的是,Chrome 开发者工具的元素面板中显示的内容不一定是相应正文的原文,要想知道“☒”符号是什么,还需要到网页源代码中确认。对应的网页源代码如下:
1 |
<div class="movie-index"> |
从网页源代码中看到的并不是符号,而是由&#x 开头的一些字符,这与示例 6 中的 SVG 映射反爬虫非常相似。我们将页面显示的数字与网页源代码中的字符进行比较,映射关系如图 6-33 所示。 图 6-33 字符与数字的映射关系 字符与数字是一一对应的,我们只需要多找一些页面,将 0 ~ 9 数字对应的字符凑齐即可。但如果目标网站的字体是动态变化的呢?映射关系也是变化的呢? 根据 6.3 节的学习和分析,我们知道人为映射并不能解决这些问题,必须找到映射关系的规律,并使用 Python 代码实现映射算法才行。继续往下分析,难道字符映射是先异步加载数据再使用 JavaScript 渲染的? 图 6-34 请求记录 网络请求记录如图 6-34 所示,请求记录中并没有发现异步请求,这个猜测并没有得到证实。CSS 样式方面有没有线索呢?页面中包裹符号的标签的 class 属性值都是 stonefont:
1 |
<span class="stonefont">.</span> |
但对应的 CSS 样式中仅设置了字体:
1 |
.stonefont { |
既然是自定义字体,就意味着会加载字体文件,我们可以在网络请求中找到加载的字体文件 movie.woff,并将其下载到本地,接着使用百度字体编辑器看一看里面的内容。 百度字体编辑器 FontEditor (详见 http://fontstore.baidu.com/static/editor/index.html)是一款在线字体编辑软件,能够打开本地或者远程的 ttf、woff、eot、otf 格式的字体文件,具备这些格式字体文件的导入和导出功能,并且提供字形编辑、轮廓编辑和字体实时预览功能,界面如图 6-35 所示。 图 6-35 百度字体编辑器界面 打开页面后,将 movie.woff 文件拖曳到百度字体编辑器的灰色区域即可,字体文件内容如图 6-36 所示。 图 6-36 字体文件 movie.woff 预览 该字体文件中共有 12 个字体块,其中包括 2 个空白字体块和 0 ~ 9 的数字字体块。我们可以大胆地猜测,评分数据和票房数据中使用的数字正是从此而来。 由此看来,我们还需要了解一些字体文件格式相关的知识,在了解文件格式和规律后,才能够找到更合理的解决办法。
6.4.2 字体文件 WOFF
WOFF(Web Open Font Format,Web 开放字体格式)是一种网页所采用的字体格式标准。本质上基于 SFNT 字体(如 TrueType),所以它具备 TrueType 的字体结构,我们只需要了解 TrueType 字体的相关知识即可。 TrueType 字体是苹果公司与微软公司联合开发的一种计算机轮廓字体,TrueType 字体中的每个字形由网格上的一系列点描述,点是字体中的最小单位,字形与点的关系如图 6-37 所示。 图 6-37 字形与点的关系 字体文件中不仅包含字形数据和点信息,还包括字符到字形映射、字体标题、命名和水平指标等,这些信息存在对应的表中,所以我们也可以认为 TrueType 字体文件由一系列的表组成,其中常用的表 及其作用如图 6-38 所示。 图 6-38 构成字体文件的常用表及其作用 如何查看这些表的结构和所包含的信息呢?我们可以借助第三方 Python 库 fonttools 将 WOFF 等字体文件转换成 XML 文件,这样就能查看字体文件的结构和表信息了。首先我们要安装 fonttools 库, 安装命令为:
1 |
$ pip install fonttools |
安装完毕后就可以利用该库转换文件类型,对应的 Python 代码为:
1 |
from fontTools.ttLib import TTFont |
代码运行后就会在当前目录生成名为 movie 的 XML 文件。文件中字符到字形映射表 cmap 的内容如下:
1 |
<cmap_format_4 platformID="0" platEncID="3" language="0"> |
map 标签中的 code 代表字符,name 代表字形名称,关系如图 6-39 所示。 图 6-39 字符到字形映射关系示例 XML 中的字符 0xe339 与网页源代码中的字符 对应,这样我们就确定了 HTML 中的字符码与 movie.woff 字体文件中对应的字形关系。字形数据存储在 glyf 表中,每个字形的数据都是独立的,例如字形 uniE339 的字形数据如下:
1 |
<TTGlyph name="uniE339" xMin="0" yMin="-12" xMax="510" yMax="719"> |
TTGlyph 标签中记录着字形的名称、x 轴坐标和 y 轴坐标(坐标也可以理解为字形的宽高)。contour 标签记录的是字形的轮廓信息,也就是多个点的坐标位置,正是这些点构成了如图 6-40 所示的字形。 图 6-40 字形 uniE339 的轮廓 我们可以在百度字体编辑器中调整点的位置,然后保存字体文件并将新字体文件转换为 XML 格式,相同名称的字形数据如下:
1 |
<TTGlyph name="uniE339" xMin="115" yMin="6" xMax="430" yMax="495"> |
接着将调整前的字形数据和调整后的字形数据进行对比。 如图 6-41 所示,点的位置调整后,字形数据也会发生相应的变化,如 xMin、xMax、yMin、yMax 还有 pt 标签中的 x 坐标 y 坐标都与之前的不同了。 图 6-41 字形数据对比 XML 文件中记录的是字形坐标信息,实际上,我们没有办法直接通过字形数据获得文字,只能从其他方面想办法。虽然目标网站使用多套字体,但相同文字的字形也是相同的。比如现在有 movie.woff 和 food.woff 这两套字体,它们包含的字形如下:
1 |
# movie.woff |
要实现自动识别文字,需要先准备参照字形,也就是人为地准备数字 0 ~ 9 的字形映射关系和字形数据,如:
1 |
# 0 和 7 与字形名称的映射伪代码,data 键对应的值是字形数据 |
当我们遇到目标网站上其他字体文件时,就可以使用参照字形中的字形数据与目标字形进行匹配,如果字形数据非常接近,就认为这两个字形描述的是相同的文字。字形数据包含记录字形名称和字形起止坐标的 TTGlyph 标签以及记录点坐标的 pt 标签,起止坐标代表的是字形在画布上的位置,点坐标代表字形中每个点在画布上的位置。在起止坐标中,x 轴差值代表字形宽度,y 轴差值代表字形高度。 如图 6-42 所示,两个字形的起止坐标和宽高都有很大的差别,但是却能够描述相同的文字,所以字形在画布中的位置并不会影响描述的文字,字形宽度和字形高度也不会影响描述的文字。 图 6-42 描述相同文字的两个字形 点坐标的数量和坐标值可以作为比较条件吗? 如图 6-43 所示,两个不同文字的字形数据是不一样的。虽然这两种字形的 name 都是 uniE9C7,但是字形数据中大部分 pt 标签 x 和 y 的差距都很大,所以我们可以判定这两个字形描述的并不是 同一个文字。你可能会想到点的数量也可以作为排除条件,也就是说如果点的数量不相同,那么这个 两个字形描述的就不是同一个文字。真的是这样吗? 图 6-43 描述不同文字的字形数据对比 在图 6-44 中,左侧描述文字 7 的字形有 17 个点,而右侧描述文字 7 的字形却有 20 个点。对应的字形信息如图 6-45 所示。 图 6-44 描述相同文字的字形 图 6-45 描述相同文字的字形信息 虽然点的数量不一样,但是它们的字形并没有太大的变化,也不会造成用户误读,所以点的数量并不能作为排除不同字形的条件。因此,只有起止坐标和点坐标数据完全相同的字形,描述的才是相同字符。
6.4.3 字体反爬虫绕过实战
要确定两组字形数据描述的是否为相同字符,我们必须取出 HTML 中对应的字形数据,然后将待确认的字形与我们准备好的基准字形数据进行对比。现在我们来整理一下这一系列工作的步骤。 (1) 准备基准字形描述信息。 (2) 访问目标网页。 (3) 从目标网页中读取字体编码字符。 (4) 下载 WOFF 文件并用 Python 代码打开。 (5) 根据字体编码字符找到 WOFF 文件中的字形轮廓信息。 (6) 将该字形轮廓信息与基准字形轮廓信息进行对比。 (7) 得出对比结果。 我们先完成前 4 个步骤的代码。下载 WOFF 文件并将其中字形描述的文字与人类认知的文字进行映射。由于字形数据比较庞大,所以我们可以将字形数据进行散列计算,这样得到的结果既简短又唯一,不会影响对比结果。这里以数字 0 ~ 9 为例:
1 |
base_font = { |
字典中的 name 代表该字形的名称,value 代表该字形描述的文字,hex 代表字形信息的 MD5 值。 考虑到网络请求记录中的字体文件路径有可能会变化,我们必须找到 CSS 中设定的字体文件路径,引入 CSS 的 HTML 代码为:
1 |
<link href="./css/movie.css" rel="stylesheet"> |
由引入代码得知该 CSS 文件的路径为 http://www.porters.vip/confusion/css/movie.css,文件中 @font-face 处就是设置字体的代码:
1 |
@font-face { |
字体文件路径为 http://www.porters.vip/confusion/font/movie.woff。找到文件后,我们就可以开始编写代码了,对应的 Python 代码如下:
1 |
import re |
因为 TTFont 可以直接读取 woff 文件的结构,所以这里不需要将 woff 保存为 XML 文件。接着以评分数据 9.7 对应的编码 #xe624.#xe9c7 进行测试,在原来的代码中引入基准字体数据 base_font,然后新增以下代码:
1 |
web_code = '.' |
以上代码运行结果为:
1 |
['9', '7'] |
运行结果说明能够正确映射字体文件中字形描述的文字。
6.4.4 小结
字体反爬能给爬虫工程师带来很大的麻烦。虽然爬虫工程师找到了应对方法,但这种方法依赖的条件比较严苛,如果开发者频繁改动字体文件或准备多套字体文件并随机切换,那真是一件令爬虫工程师头疼的事。不过,这些工作对于开发者来说也不是轻松的事。
新书福利
真是翘首以盼!《Python3 反爬虫原理与绕过实战》一书终于要跟大家见面了!为了感谢大家对韦世东和本书的期待与支持,在新书发布时会举办多场送书活动和限时折扣活动。 想要与作者韦世东交流或者参加新书发布活动的朋友可以扫描二维码进群与我互动哦!
转载说明
本篇内容摘自出版图书《Python3 反爬虫原理与绕过实战》,欢迎各位好友与同行转载! 记得带上相关的版权信息哦😊。